向量a=(√3sinx,cosx),向量b=(cosx,cosx)

问题描述:

向量a=(√3sinx,cosx),向量b=(cosx,cosx)
1·向量a*向量b=1 且x∈【-π/4,π/4】求x的值
2·设f(x)=向量a*向量b,求f(x)的周期及单调减区间

∵a•b=√3sinx cosx+ cos^2x=(√3/2)sin2x+[(2 cos^2x-1)+1]/2=(√3/2)sin2x+(1/2)cos2x+(1/2)= sin[2x+(π/6)]+ (1/2)=1则,sin[2x+(π/6)]= 1/2=sin(π/6)又∵x∈[-π/4,π/4]∴2x+(π/6)= π/6∴x=0(2)又(1...