在平面直角坐标系中,已知抛物线y=-x²+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交与点

问题描述:

在平面直角坐标系中,已知抛物线y=-x²+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交与点
顶点为E
(1)若b=2,c=3,求此时抛物线顶点的坐标
(2)将(1)的抛物线向下平移,若平移后,在四边形ABCD中满足S△BCE=S△ABC,求此时直线BC的解析式
(3)将(1)中的抛物线做适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线y=-4x+3上,求此时抛物线的解析式
求求你们了,马上就要

(1)若b=2,c=3,求此时抛物线顶点的坐标y=-x^2+2x+3=-(x-1)^2+4 所以 x=1的时候y最大值即顶点E坐标(1,4)(2)y=-x^2+2x+3=-(x-1)^2+4=0(点A在点B的左侧),A点坐标(-1,0), B点坐标(3,0)与y轴的正半轴交与点c(0,3)将...