如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求直线BF和平面BCE所成角的正弦值.
问题描述:
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
答
(1)证明:取CE的中点G,连FG、BG.∵F为CD的中点,∴GF∥DE且GF=12DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=12DE,∴GF=AB.∴四边形GFAB为平行四边形,则AF∥BG.∵AF⊄平面BCE,BG⊂平面BCE...