在△ABC中,A,B,C所对的边分别为a,b,c.A=30°,(1+根号3)c=2b.(1)求C.(2)若向量CB*向量CA=1+根号3,

问题描述:

在△ABC中,A,B,C所对的边分别为a,b,c.A=30°,(1+根号3)c=2b.(1)求C.(2)若向量CB*向量CA=1+根号3,
求a,b,c

1、A=π/6(1+√3)*c=2b即 (1+√3)*sinC=2sinB
sinB=sin(5π/6-C)=0.5cosC+0.5√3sinC
2sinB=cosC+√3sinC=(1+√3)*sinCcosC=sinCC=45°
2、由正弦定理
b=0.5*√2*(1+√3)a
c=√2a
(CB向量)*(CA向量)=ab*cosC=0.5*√2*(1+√3)a*a*0.5*√2=1+√3
a=2√2c=4b=2+2√3