x,y是正实数,用柯西不等式证明:x^2/(y^2+y*x)+y^2/(x^2+y*x)>=1

问题描述:

x,y是正实数,用柯西不等式证明:x^2/(y^2+y*x)+y^2/(x^2+y*x)>=1
鄙人谢谢各位!

证明:∵(x+y)²=x²+2xy+y²=(y²+xy)+(x²+xy)∴由题设及柯西不等式,可得:[(y²+xy)+(x²+xy)]×{[x²/(y²+xy)]+[y²/(x²+xy)]}≥(x+y)²两边同除以(x+y)...