z=f(x,y),x=y+g(y) 求dz/dx
问题描述:
z=f(x,y),x=y+g(y) 求dz/dx
答
由x=y+g(y)得到
1=dy/dx+g'(y)dy/dx=(1+g')dy/dx
故dy/dx=1/(1+g')
然后由z=f(x,y)得到
dz/dx=df/dx+df/dy * dy/dx
(df/dx,df/dy我用fx,fy代替了)
=fx+fy/(1+g')