在数列{an}中,a1=13,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式( ) A.1(n−1)(n+1) B.12n(2n+1) C.1(2n−1)(2n+1) D.1(2n+1)(2n+2)
问题描述:
在数列{an}中,a1=
,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式( )1 3
A.
1 (n−1)(n+1)
B.
1 2n(2n+1)
C.
1 (2n−1)(2n+1)
D.
1 (2n+1)(2n+2)
答
由a1=
,Sn=n(2n-1)an,1 3
得S2=2(2×2-1)a2,即a1+a2=6a2,
∴a2=
=1 15
,S3=3(2×3-1)a3,1 3×5
即
+1 3
+a3=15a3.∴a3=1 15
=1 35
,a4=1 5×7
.1 7×9
由此猜想an=
.1 (2n−1)(2n+1)
故选C.