在数列{an}中,a1=13,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式(  ) A.1(n−1)(n+1) B.12n(2n+1) C.1(2n−1)(2n+1) D.1(2n+1)(2n+2)

问题描述:

在数列{an}中,a1=

1
3
,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式(  )
A.
1
(n−1)(n+1)

B.
1
2n(2n+1)

C.
1
(2n−1)(2n+1)

D.
1
(2n+1)(2n+2)

由a1=

1
3
,Sn=n(2n-1)an
得S2=2(2×2-1)a2,即a1+a2=6a2
∴a2=
1
15
=
1
3×5
,S3=3(2×3-1)a3
1
3
+
1
15
+a3=15a3.∴a3=
1
35
=
1
5×7
,a4=
1
7×9

由此猜想an
1
(2n−1)(2n+1)

故选C.