方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)表示的曲线关于x+y=0成轴对称图形,则(  ) A.D+E=0 B.D+F=0 C.E+F=0 D.D+E+F=0

问题描述:

方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)表示的曲线关于x+y=0成轴对称图形,则(  )
A. D+E=0
B. D+F=0
C. E+F=0
D. D+E+F=0

曲线关于x+y=0成轴对称图形,即圆心在x+y=0上.圆心坐标是(−

D
2
,−
E
2
),所以D+E=0.
故选A.