已知向量a=(cosx,根号3),b=(1,sinx),函数f(x)=a*b,
问题描述:
已知向量a=(cosx,根号3),b=(1,sinx),函数f(x)=a*b,
x属于R,若f(x)=根号3,求x的值 求f(x)在[0,π]上的最值
答
f(x)=a*b=cosx+根号3sinx=2sin(x+π/3)=根号3
sin(x+π/3)=根号3/2
x+π/3=π/3+2kπ或(2k+1)π-π/3
x=2kπ或(2k+1)π-2π/3
f(x)=2sin(x+π/3)
x∈[0,π]
x+π/3∈[π/3,4π/3]
最大=1
最小=-根号3