过原点的直线与圆x2+y2-6x+5=0相交于A、B两点,求弦AB的中点M的轨迹方程.

问题描述:

过原点的直线与圆x2+y2-6x+5=0相交于A、B两点,求弦AB的中点M的轨迹方程.

设圆x2+y2-6x+5=0的圆心为C,则C的坐标是(3,0),由题意,CM⊥AB,①当直线CM与AB的斜率都存在时,即x≠3,x≠0时,则有kCMkAB=-1,∴yx−3×yx=−1(x≠3,x≠0),化简得x2+y2-3x=0(x≠3,x≠0),②当x=3时,...