判别式法求函数值域的原理

问题描述:

判别式法求函数值域的原理

以下图为例吧,在①式中,每个x的值都会得到一个y的值,化为一元二次方程之后,x,y的关系没有发生变化.只是形式上变了,从分式变成了二次式.这里要注意一个x不为0,有时候y会出现多余的值.
x是一定有值与y对应的,这个对应的条件就变为方程有解.
如果取一对x,y的值,准确的说是取一个y值,若没有△≥0成立,x与y不会对应,相反,若有△≥0成立,求出相应的根x与y对应,即反过来,给这个x就会得出原来的y.