如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB. (1)当△COD和△AOB全等时,求C、D两点的坐标; (2)是否存在经过
问题描述:
如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB.
(1)当△COD和△AOB全等时,求C、D两点的坐标;
(2)是否存在经过第一、二、三象限的直线CD,使CD⊥AB?如果存在,请求出直线CD的解析式;如果不存在,请说明理由.
答
(1)由题意,得A(2,0),B(0,4),
即AO=2,OB=4.
①当线段CD在第一象限时,
点C(0,4),D(2,0)或C(0,2),D(4,0).
②当线段CD在第二象限时,
点C(0,4),D(-2,0)或C(0,2),D(-4,0).
③当线段CD在第三象限时,
点C(0,-4),D(-2,0)或C(0,-2),D(-4,0).
④当线段CD在第四象限时,
点C(0,-4),D(2,0)或C(0,-2),D(4,0)
(2)C(0,2),D(-4,0).
直线CD的解析式为y=
x+2.1 2