证明:(a+b-2ab)(a+b-2)+(1-ab)^2=(a-1)^2(b-1)^2
问题描述:
证明:(a+b-2ab)(a+b-2)+(1-ab)^2=(a-1)^2(b-1)^2
答
证:(a-1)^2(b-1)^2-(1-ab)^2=[(a-1)(b-1)+(1-ab)][(a-1)(b-1)-(1-ab)]=(ab-a-b+1+1-ab)(ab-a-b+1-1+ab)=(-a-b+2)(2ab-a-b)=(a+b-2ab)(a+b-2)(a+b-2ab)(a+b-2)+(1-ab)^2=(a-1)^2(b-1)^2