①已知cos(π/4-a)=3/5,sin(3π/4+b)=5/13,其中π/4
问题描述:
①已知cos(π/4-a)=3/5,sin(3π/4+b)=5/13,其中π/4
答
- cos(π/4-a)=3/5,
可以求出sin(π/4-a)=±4/5
又π/4<a<3π/4, -π/2<π/4-a<0
∴sin(π/4-a)=-4/5
同理:
sin(3π/4+b)=5/13;
cos(3π/4+b)=-12/13
注意:a+b=[(3π/4+b)-(π/4-a)]-π/2
∴sin(a+b)=sin{[(3π/4+b)-(π/4-a)]-π/2}=-cos{[(3π/4+b)-(π/4-a)]=-cos(3π/4+b)cos(π/4-a)]-sin(3π/4+b)sin(π/4-a)]
=-(-12/13)*(3/5)-(5/13)(-4/5)=56/65
答
1.因为(3π/4+b)-(π/4-a)=b+a+π/2所以cos[(a+b)+π/2]=cos(a+b)*cosπ/2-sin(a+b)*sinπ/2=-sin(a+b)所以sin(a+b)=-cos[(a+b)+π/2]=-cos[(3π/4+b)-(π/4-a)] =-[cos(3π/4+b)*cos(π/4-a)+sin(3π/4+b...