已知实数x满足x+(1/x)等于3,又(x³+mx²+x)/(x⁴+2mx²+1)=1/3,则m=?
问题描述:
已知实数x满足x+(1/x)等于3,又(x³+mx²+x)/(x⁴+2mx²+1)=1/3,则m=?
答
∵x+(1/x)=3∴x/(x^2+1)=1/3,x^2-3x+1=0x=(3-√5)/2,x=(3+√5)/2当x=(3-√5)/2时,x^4-3x^3-3x+1=(-51+27√5)/4; ①当x=(3+√5)/2时,x^4-3x^3-3x+1=(-75-33√5)/4 ②又∵(x^3+mx^2+x)/(x^4+2mx^2+1)=1/33x^3+3mx^2+3...