求证: (1)1−2sinxcosxcos2x−sin2x=1−tanx1+tanx; (2)(cosβ-1)2+sin2β=2-2cosβ.
问题描述:
求证:
(1)
=1−2sinxcosx cos2x−sin2x
;1−tanx 1+tanx
(2)(cosβ-1)2+sin2β=2-2cosβ.
答
(1)左=1−2sinxcosxcos2x−sin2x=cos2x+sin2x−2sinxcosxcos2x−sin2x=(cosx−sinx)2(cosx+sinx)(cosx−sinx)=cosx−sinxcosx+sinx=1−tanx1+tanx=右边.故1−2sinxcosxcos2x−sin2x=1−tanx1+tanx.(2)左=(c...