已知可导函数y=f(x)满足f(x-2)=f(-x),函数y=f(x)的图象在点(1,f(1))处的切线方程为y=2x+1,则f′(1)=_,函数y=f(x)的图象在点(-3,f(-3))处的切线方程为_.
问题描述:
已知可导函数y=f(x)满足f(x-2)=f(-x),函数y=f(x)的图象在点(1,f(1))处的切线方程为y=2x+1,则f′(1)=______,函数y=f(x)的图象在点(-3,f(-3))处的切线方程为______.
答
∵导数的几何意义是切线的斜率,∴f′(1)就是函数y=f(x)的图象在点(1,f(1))处的切线的斜率,故f′(1)=2∵f(x-2)=f(-x),∴f(-3)=f(-1-2)=f[-(-1)]=f(1)又函数y=f(x)的图象在点(1,f(1)...