已知函数f(x)=cos(2x+π/3)+sin2x-cos2x+2√3sinxcosx

问题描述:

已知函数f(x)=cos(2x+π/3)+sin2x-cos2x+2√3sinxcosx
1.求函数的单调减区间
2.若x∈〔0,π/2〕,求f(x)的最值

f(x)=cos(2x+π/3)+sin2x-cos2x+2√3sinxcosx=cos2xcosπ/3-sin2xsinπ/3+sin2x-cos2x+√3sin2x=sin2x-(cos2x-√3sin2x)/2=sin2x-sin(π/6-2x)=2cos[(2x+π/6-2x)/2]*sin[(2x-π/6+2x)/2]=2cos(π/12)sin(2x-π/...