计算:1/1×3+1/3×5+1/5×7+…+1/99×101.
问题描述:
计算:
+1 1×3
+1 3×5
+…+1 5×7
. 1 99×101
答
∵
=1 n(n+2)
(1 2
-1 n
),1 n+2
∴原式=
(1 2
-1 1
)+1 3
(1 2
-1 3
)+1 5
(1 2
-1 5
)+…+1 7
(1 2
-1 99
)1 101
=
(1-1 2
+1 3
-1 3
+1 5
-1 5
+…+1 7
-1 99
)1 101
=
(1-1 2
)1 101
=
.50 101