计算:1/1×3+1/3×5+1/5×7+…+1/99×101.

问题描述:

计算:

1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

1
n(n+2)
=
1
2
1
n
-
1
n+2
),
∴原式=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+
1
2
1
99
-
1
101

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
99
-
1
101

=
1
2
(1-
1
101

=
50
101