以线段a=16,b=13为梯形的两底,c=1作为一腰作梯形,则另一腰d的取值范围

问题描述:

以线段a=16,b=13为梯形的两底,c=1作为一腰作梯形,则另一腰d的取值范围


设梯形ABCD,AD∥BC,
设AD=13,BC=16,AB=1,
过D点作AB的平行线,交BC于E点,
则四边形ABED是平行四边形,
∴BE=AD=13,∴EC=3,DE=AB=1,
由△DEC三边关系得:
3-1<CD<3+1,
∴2<d<4,
∴梯形另一条腰d的取值范围是:
2<d<4.