在正方形ABCD各边上截取AE=BF=CG=DH,连结AF、BG、CH、DE,依次相交于N、P、Q、M,证明:四边形MNPQ是正方形

问题描述:

在正方形ABCD各边上截取AE=BF=CG=DH,连结AF、BG、CH、DE,依次相交于N、P、Q、M,证明:四边形MNPQ是正方形

由于为正方形,AB=BC=CD=AD且AE=BF=CG=DH因此EB=FC=GD=HA角A,B,C,D均为直角因此AEH,EBF,CFG,DHG全等有EF=FG=GH=HE,因此四边形MNPQ是菱形和AEH=EFB,由于EFB+FEB=90因此EFB+AEH=90HEF=90所以四边形MNPQ为正方形...