将x5+x4+1因式分解得( ) A.(x2+x+1)(x3+x+1) B.(x2-x+1)(x3+x+1) C.(x2-x+1)(x3-x+1) D.(x2+x+1)(x3-x+1)
问题描述:
将x5+x4+1因式分解得( )
A. (x2+x+1)(x3+x+1)
B. (x2-x+1)(x3+x+1)
C. (x2-x+1)(x3-x+1)
D. (x2+x+1)(x3-x+1)
答
原式=x3(x2+x+1)-(x3-1)
=x3(x2+x+1)-(x-1)(x2+x+1)
=(x2+x+1)(x3-x+1)
故选D.