已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.
问题描述:
已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.
答
∵a,b是Rt△ABC的两条直角边,c是斜边,
∴a2+b2=c2,
即a2=c2-b2=(c+b)(c-b),
∵a为质数,
∴c+b=a2,c-b=1,
∴a2=2b+1,
∴2(a+b+1)=a2+2a+1=(a+1)2,
∴2(a+b+1)是完全平方数.