对于数列{an},如果存在最小的一个常数T(T∈N*),使得对任意的正整数恒有an+T=an成立,则称数列{an}是周期为T的周期数列.设m=qT+r,(m,q,T,r∈N*),数列前m,T,r项的和分别记为Sm,ST
问题描述:
对于数列{an},如果存在最小的一个常数T(T∈N*),使得对任意的正整数恒有an+T=an成立,则称数列{an}是周期为T的周期数列.设m=qT+r,(m,q,T,r∈N*),数列前m,T,r项的和分别记为Sm,ST,Sr,则Sm,ST,Sr三者的关系式______.
答
∵数列{an}是周期为T的周期数列,m=qT+r,
∴Sm=(a1+a2+…+aT)+(a1+T+a2+T+…+a2T)+…+(a1+(q-1)T+a2+(q-1)T+…+aqT)+(a1+qT+a2+qT+…+ar+(q+1)T)=qST+Sr
∴Sm=qST+Sr,
故答案为:Sm=qST+Sr