非零向量a,b满足〔a+b〕⊥〔2a-b〕,〔a-2b〕⊥〔2a+b〕,求a,b夹角的余弦值
问题描述:
非零向量a,b满足〔a+b〕⊥〔2a-b〕,〔a-2b〕⊥〔2a+b〕,求a,b夹角的余弦值
答
〔a+b〕⊥〔2a-b〕,〔a-2b〕⊥〔2a+b〕所以〔a+b〕·〔2a-b〕=0,〔a-2b〕·〔2a+b〕=0即2a² +a`b -b² =0,2a² -3a`b -2b² =0, 代入,得 8a² =5b², 4a`b=-b²所以cosα =(a`b)/...cosα =(a`b)/(|a||b|) = - 根号10/10 这步还能更详细点吗?由8a2 =5b2, 4a`b=-b2,所以,a`b = -b2/4,a2 =5b2/8, |a|= (|b| 根号10)/4