已知三角形ABC的面积为S,外接圆半径为R,角A,角B,角C的对边分别为a,b,c,证明:R=abc/4s
问题描述:
已知三角形ABC的面积为S,外接圆半径为R,角A,角B,角C的对边分别为a,b,c,证明:R=abc/4s
答
已知:如题.
求证:R=abc/4S
证明:对于任意三角形,其面积S=(1/2)*absinC
由正弦定理:a/sinA=b/sinB=c/sinC=2R
因,c/sinC=2R
故,R=c/2sinC
又由面积公式得:sinC=2S/ab
故,R=(c/2)/(2S/ab)
即,R=abc/4S
证毕.