求证:方程(x-a)(x-a-b)=1的一个根大于a,另一个小于a x1+x2=2a+b,x1x2=a^2+ab-1(x1-a)(x2-a)=x1x2-a(x1+x2)+a^2=a^2+ab-1-2a^2-ab+a^2=-1<0∴(x1-a)(x2-a)<0则x1-a和x2-a一个小于0,一个大于0∴x1和x2一个小于a,一个大于a 这些过程看不懂...

问题描述:

求证:方程(x-a)(x-a-b)=1的一个根大于a,另一个小于a
x1+x2=2a+b,x1x2=a^2+ab-1
(x1-a)(x2-a)
=x1x2-a(x1+x2)+a^2
=a^2+ab-1-2a^2-ab+a^2
=-1<0
∴(x1-a)(x2-a)<0
则x1-a和x2-a一个小于0,一个大于0
∴x1和x2一个小于a,一个大于a
这些过程看不懂...

可文然,证明:x^2-(a+a+b)x+a(a+b)-1=0x1+x2=2a+b,x1x2=a^2+ab-1(x1-a)(x2-a)=x1x2-a(x1+x2)+a^2=a^2+ab-1-2a^2-ab+a^2=-1<0∴(x1-a)(x2-a)<0则x1-a和x2-a一个小于0...