游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来(如图).我们把这种情况抽象为下图的模型:弧形轨道的下端与竖直圆轨道相接,使小球从弧形轨道上端滚下,小球进入圆
问题描述:
游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来(如图).我们把这种情况抽象为下图的模型:弧形轨道的下端与竖直圆轨道相接,使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h大于一定值,小球就可以顺利通过圆轨道的最高点.如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力.
答
小球恰能通过最高点,即小球通过最高点时恰好不受轨道的压力,重力提供向心力.
由牛顿运动定律有:mg=m
,v2 R
小球在最高点处的速度至少为:v=
,
gR
小球由静止运动到最高点的过程中,只有重力做功.
由机械能守恒定律得:mgh=
mv2+mg•2R1 2
联立解得:h=2.5R.
答:h至少要等于2.5R.