甲、乙两地相距180km,一人骑自行车从甲地出发每小时走15km;另一人骑摩托车从乙地同时出发,两人相向而行
甲、乙两地相距180km,一人骑自行车从甲地出发每小时走15km;另一人骑摩托车从乙地同时出发,两人相向而行
,已知摩托车车速是自行车的3倍,问多少小时后两人相遇?
设x小时相遇
(15+15×3)×x=180
60x=180
x=180÷60
x=3老师说先把关系式列出来可是我总是找不好 怎么办?你就按照题中说的意思,用文字和运算符号写出来,就是数量关系式了。不懂怎么不懂?嗯?就是不理解,如果你把题目换一下,就不会了(1)抓住数学术语找等量关系应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2 x-4=50.(2)根据常见的数量关系找等量关系常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36 x=216.(3)根据常用的计算公式找等量关系常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4x =19.(4)根据文字关系式找等量关系例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:一班+二班+三班=总数一班+二班=总数-三班一班+三班=总数-二班二班+三班=总数-一班根据这些文字等量关系式,可列出以下方程,如:36+37+ x=10836+37=108-x 36+ x=108-3737+ x=108-36(5)根据图形找等量关系例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2 x=400.