求函数f(x)=x²-2ax-1在区间【0,2】上的最大值和最小值
问题描述:
求函数f(x)=x²-2ax-1在区间【0,2】上的最大值和最小值
不胜受恩感激.
答
f(x)=x²-2ax-1=x²-2ax+a²-(a²+1)=(x-a)²-(a²+1)
对称轴x=a,二次项系数1>0,函数图像开口向上.
(1)
a≤0时,区间在对称轴右侧,函数单调递增.
x=2时,f(x)有最大值[f(x)]max=4-4a-1=3-4a
x=0时,f(x)有最小值[f(x)]min=0-0-1=-1
(2)
a≥2时,区间在对称轴左侧,函数单调递减.
x=0时,f(x)有最大值[f(x)]max=0-0-1=-1
x=2时,f(x)有最小值[f(x)]min=4-4a-1=3-4a
0