(2009•安徽)设函数f(x)=sinθ3x3+3cosθ2x2+tanθ,其中θ∈[0,5π12],则导数f′(1)的取值范围是(  ) A.[-2,2] B.[2,3] C.[3,2] D.[2,2]

问题描述:

(2009•安徽)设函数f(x)=

sinθ
3
x3+
3
cosθ
2
x2+tanθ,其中θ∈[0,
12
],则导数f′(1)的取值范围是(  )
A. [-2,2]
B. [
2
3
]
C. [
3
,2]
D. [
2
,2]

∵f′(x)=sinθ•x2+

3
cosθ•x,
∴f′(1)=sinθ+
3
cosθ=2sin(θ+
π
3
).
∵θ∈[0,
12
],
∴θ+
π
3
∈[
π
3
4
].
∴sin(θ+
π
3
)∈[
2
2
,1].
∴2sin(θ+
π
3
)∈[
2
,2].
故选D.