已知三角形ABC,对于任意t属于R,(向量BA 减去t倍向量BC)的绝对值大于等于(向量AC)的绝对值,则角C等于?

问题描述:

已知三角形ABC,对于任意t属于R,(向量BA 减去t倍向量BC)的绝对值大于等于(向量AC)的绝对值,则角C等于?

作BC边上的高AD,那么,AD=BA-BD=BA-|BD|/|BC|*BC,即t=|BD|/|BC|的情况,
所以,|AC|所以|AD|=|AC|,所以C=90°
也可以用代数的方法证明:(BA-tBC)^2>=AC^2,所以:(BC+AC-tBC)^2>=AC^2
打开后:(1-t)^2*BC^2+2(1-t)BC*AC+AC^2>=AC^2
消去AC^2得到(1-t)^2*BC^2+2(1-t)BC*AC>=0
所以,b^2-4ac所以,(2BC*AC)^2还有,把题目中的说法改成向量的模,不是向量的绝对值.