若f(cosX)=3-cos2X,则f(sinX)

问题描述:

若f(cosX)=3-cos2X,则f(sinX)

因为sinx^2=1-cos^2
所以f(cosX)=3-cos2X =3-(2cos^2x-1) =2-2cos^2x 令t=cosx f(t)=2-2t^2所以 f(sinx)=2-2sin^2x =1+(1-2sin^2x) =1+cos2x