f(x)有2阶导数,f'(x)不等于0,x=g(y),y=f(x)互为反函数,试用f'(x),f"(x)表示g"(y).
问题描述:
f(x)有2阶导数,f'(x)不等于0,x=g(y),y=f(x)互为反函数,试用f'(x),f"(x)表示g"(y).
我晕了,
答
先求g'(y)然后再求g''(y)书上有反函数公式:g'(y)=1/f'(x) =dx/dy 再求导 g"(y)= d(dx/dy)/dy=dx/dy乘以d(dx/dy)/dx=1/f'(x) x[1/f'(x) ]' =1/f'(x) x(-f''(x)/f('x)^2=-f''(x)/f'(x)^3