一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.
问题描述:
一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.
答
(0.4+0.1+0.2+0.1+0.2)÷5=0.2,即总数为12÷0.2=60,所以黑球数是60-12=48个.
答案解析:首先计算5次比值的平均数,即估计总体中白球所占的百分比.根据已知部分求全体,用除法即可求得总数,从中去掉白球,即为所求.
考试点:利用频率估计概率.
知识点:关键是根据白球的频率得到相应的等量关系求得白球的个数.