(2002•天津)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1/2∠DAC;④△ABC是正三角形.请写出正确结论的序号
问题描述:
(2002•天津)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=
1 |
2 |
答
∠DAC,③正确;
当△ABC是正三角形时,∠CAB=60°
那么∠DAB=120°,
如图所示是不可能的,所以错误.
故①③对.
∵AB=AC,AC=AD,
∴AB=AD
∵AC平分∠DAB
∴AC垂直平分BD,①正确;
∴DC=CB,
易知DC>DE,
∴BC>DE,②错;
D、C、B可看作是以点A为圆心的圆上,
根据圆周角定理,得∠DBC=
1 |
2 |
当△ABC是正三角形时,∠CAB=60°
那么∠DAB=120°,
如图所示是不可能的,所以错误.
故①③对.