若α为第二象限角,且sin(α-π/4)+根号2*cos2α=0,则sinα+cosα的值为
问题描述:
若α为第二象限角,且sin(α-π/4)+根号2*cos2α=0,则sinα+cosα的值为
答
sin(α-π/4)+根号2*cos2α=0
√2/2sina-√2/2cosa+√2(cos²a-sin²a)=0
1/2(sina-cosa)+(cosa+sina)(cosa-sina)=0
(cosa-sina)(cosa+sina-1/2)=0
因为a是第二象限角
所以cos不等于sina
所以cosa+sina-1/2=0
sina+cosa=1/2