求(2+1)(2^2+1)(2^4+1).(2^64+1)+1的末尾数
问题描述:
求(2+1)(2^2+1)(2^4+1).(2^64+1)+1的末尾数
答
(2+1).(2^2+1).(2^4+1).(2^64+1)+1
=(2-1)(2+1).(2^2+1).(2^4+1).(2^64+1)+1
=(2^2-1)(2^2+1).(2^4+1).(2^64+1)+1
=(2^4-1)(2^4+1).(2^64+1)+1
=(2^8-1).(2^64+1)+1
.
=(2^64-1)(2^64+1)+1
=2^128-1 +1
=2^128
2^1的末尾数是:2
2^2的末尾数是:4
2^3的末尾数是:8
2^4的末尾数是:6
2^5的末尾数是:2
.
2^n的末尾数是关于2,4,8,6循环
128/4=32
所以2^128的末尾数是:6
即(2+1)(2^2+1)(2^4+1).(2^64+1)+1的末尾数是:6