已知关于x的一元二次方程x²+(a+1)x+a=0
问题描述:
已知关于x的一元二次方程x²+(a+1)x+a=0
若m,n是原方程的两个根,且丨m-n丨=2,求a的值,并求出此时方程的两个根
(用韦达定理)
答
根据题意得
m+n=-(a+1)
mn=a
∵|m-n|=2
∴|m-n|²=(m-n)²=m²-2mn+n²=m²+2mn+n²-4mn=(m+n)²-4mn=(a+1)²-4a=a²-2a+1=4
∴a²-2a-3=0
∴a=3或a=-1
当a=3时
原方程可化为:x²+4x+3=0
∴x=-3或x=-1
当a=-1时
原方程可化为x²-1=0
∴x=-1或x=1