过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为

问题描述:

过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为

由题意得,焦点P(0,1)
得直线方程:y=x+1
联立方程:y=x+1 ,x^2=4y
得A(2+√8,3+√8),B(2-√8,3-√8)
M(x,0)
向量MA(2+√8-x,3+√8),MB(2-√8-x,3-√8)
MA点乘MB =x^2-4x-3=(x-2)^2 - 7
得起最小值 -7