计算定积分.∫(0,2)|1-x |dx

问题描述:

计算定积分.∫(0,2)|1-x |dx

∫(0→2)|1-x |dx
=∫(0→1) (1-x)dx+∫(1→2) (x-1)dx
=(x-(1/2)x²) |(0→1) + ((1/2)x²-x) |(1→2)
=1-(1/2)+2-2-(1/2)+1
=1