求值:1−2sin10°cos10°cos10°−1−cos2170°.
问题描述:
求值:
.
1−2sin10°cos10°
cos10°−
1−cos2170°
答
原式=
1−2sin10°cos10°
cos10°−
1−cos2170°
=
sin210°−2sin10°cos10°+cos210°
cos10°−
sin2170°
=
|sin10°−cos10°| cos10°−|sin170°|
=
cos10°−sin10° cos10°−|sin(180°−10°)|
=
=1cos10°−sin10° cos10°−sin10°