如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点. (1)求证:△PDQ是等腰直角三角形; (2)当点P运动到什么位置时,四边形APDQ是正方形

问题描述:

如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.

(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.

(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,BD=AD∠DBP=∠DAQBP=AQ,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BDP+∠ADP=90°∴∠ADP+...