1/(1×2)+1/(2×3)+1/(3×4).+1/(48×49)+1/(49×50)等于多少?
问题描述:
1/(1×2)+1/(2×3)+1/(3×4).+1/(48×49)+1/(49×50)等于多少?
答
可以如下分析思考:
1/(1×2)+1/(2×3)+1/(3×4)......+1/(48×49)+1/(49×50)
= (1 -1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/48 - 1/49 + (1/49 - 1/50)
= 1 - 1/50
= 49/50
答
由
1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
1-1/50=49/50