设正实数x,y,z满足x+2y+z=1,则1/x+y+9(x+y)y+z的最小值为_.
问题描述:
设正实数x,y,z满足x+2y+z=1,则
+1 x+y
的最小值为______. 9(x+y) y+z
答
∵正实数x,y,z满足x+2y+z=1,
∴
+1 x+y
=9(x+y) y+z
+x+y+y+z x+y
=1+9(x+y) y+z
+y+z x+y
≥1+29(x+y) y+z
=7,当且仅当
×y+z x+y
9(x+y) y+z
=y+z x+y
,x+y+y+z=1,即x+y=9(x+y) y+z
,y+z=1 4
时,取等号.3 4
∴则
+1 x+y
的最小值为7.9(x+y) y+z
故答案为7.