设正实数x,y,z满足x+2y+z=1,则1/x+y+9(x+y)y+z的最小值为_.

问题描述:

设正实数x,y,z满足x+2y+z=1,则

1
x+y
+
9(x+y)
y+z
的最小值为______.

∵正实数x,y,z满足x+2y+z=1,

1
x+y
+
9(x+y)
y+z
=
x+y+y+z
x+y
+
9(x+y)
y+z
=1+
y+z
x+y
+
9(x+y)
y+z
≥1+2
y+z
x+y
×
9(x+y)
y+z
=7,当且仅当
y+z
x+y
9(x+y)
y+z
,x+y+y+z=1,即x+y=
1
4
y+z=
3
4
时,取等号.
∴则
1
x+y
+
9(x+y)
y+z
的最小值为7.
故答案为7.