已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P,BE⊥DC,垂足为E,DF∥EB,交AB与点F,FH⊥BD,垂足为H,BC=4,CP=3. 求(1)BD和DH的长;(2)BE•BF的值.
问题描述:
已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P,BE⊥DC,垂足为E,DF∥EB,交AB与点F,FH⊥BD,垂足为H,BC=4,CP=3.
求(1)BD和DH的长;(2)BE•BF的值.
答
(1)连接AC,可知∠ACB=90°,AC=BC,
由勾股定理得AP=5
又∵由割线定理可得PD•PA=PC•PB,
∴PD=4.2,AD=0.8
∵∠ADB=90°,AB=4
2
∴BD=5.6
又∵∠CDB是弧BC所对圆周角,
∴∠CDB=45°,
∵BE⊥DC,DF∥EB,
∴DF⊥DE,即∠EDF=90°,
可得∠BDF=∠EDF-∠CDB=45°,
∴DH=HF
又由△BDA∽△BHF
∴
=BH BD
FH AD
∴DH=0.7
(2)∵∠CDB=45°,∠E=90°
∴∠DBE=45°
又∵∠ABC=45°,
∴∠FBH=∠CBE
又∠FHB=∠E=90°
∴△FHB∽△CEB
∴BE•BF=BC•BH
=4.9×4
=19.6