如图,在四边形ABCD中,AB∥CD,点E是BC的中点,DE平分∠ADC.求证:AE是∠DAB的平分线.
问题描述:
如图,在四边形ABCD中,AB∥CD,点E是BC的中点,DE平分∠ADC.求证:AE是∠DAB的平分线.
答
过点E作EH⊥AB于点H,反向延长EH交DC的延长线于点G,过点E作EF⊥AD于点F,
∵AB∥CD,EH⊥AB,
∴EG⊥DC,
∵点E是BC的中点,
∴CE=BE,
在△CGE与△BHE中,
,
∠GCE=∠B CE=EB ∠CEG=∠BEH
∴△CGE≌△BHE,
∴GE=EH,
∵DE平分∠ADC,
∴GE=EF,
∴GE=EH,
∴EF=EH,
∴AE是∠DAB的平分线.