如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论; (2)若PA:PB:PC=3:4:5,连接PQ,试判
问题描述:
如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;
(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.
答
(1)猜想:AP=CQ,
证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,
∴∠ABP=∠QBC.
又AB=BC,BP=BQ,
∴△ABP≌△CBQ,
∴AP=CQ;
(2)由PA:PB:PC=3:4:5,
可设PA=3a,PB=4a,PC=5a,
连接PQ,在△PBQ中
由于PB=BQ=4a,且∠PBQ=60°,
∴△PBQ为正三角形.
∴PQ=4a.
于是在△PQC中
∵PQ2+QC2=16a2+9a2=25a2=PC2
∴△PQC是直角三角形.