三角形ABC中sinA+√2sinB=2sinC cosC最小值是?
问题描述:
三角形ABC中sinA+√2sinB=2sinC cosC最小值是?
答
答:三角形ABC中:sinA+√2sinB=2sinC根据正弦定理有:a/sinA=b/sinB=c/sinC=2R所以:a+√2b=2c两边平方:a^2+2√2ab+2b^2=4c^2=4(a^2+b^2-2abcosC)3a^2+2b^2-(8cosC)*ab-2√2ab=03a^2+2b^2=2(4cosC+√2)ab>=2*(√3a...谢谢,启发很大