已知x,y是正实数且x+y=1 若不等式x2-mxy+4y≥0对满足以上条件的任意xy恒成立 则实数m的最大值为
问题描述:
已知x,y是正实数且x+y=1 若不等式x2-mxy+4y≥0对满足以上条件的任意xy恒成立 则实数m的最大值为
在三角形abc中 角abc所对的边分别是abc acosB-bcosA=(1/3)c cosc=-(根号10/10) tanb=?
答
∵x+y=1
∴y=1-x
代入x^2-mxy+4y≥0
得 x^2-mx(1-x)+4(1-x)≥0
整理得(1+m)x^2-(m+4)x+4≥0
由题知上式恒成立,即该函数图象恒在x轴上方
∴1+m>0 [等于0为一次函数,仍不能满足题意
若要图象恒在x轴上方,则其图象应与X轴有一个交点或无交点
∴Δ≤0
即(m+4)^2-16(1+m)≤0
化简得m(m-8)≤0
0≤m≤8
∴m最大值是8